Vol. 7 & Issue 2 (April 2025)

https://doi.org/10.53032/tvcr/2025.v7n2.11

Research Article

Prakriti Analysis Using AI: A Convergence of Ayurveda and Modern Technology

Gaurav Salvi

Research Scholar,
Department of Computer Science,
Kirti M. Doongursee College (Autonomous), University of Mumbai, India
gauravsalvi095@gmail.com

Prabha Kadam

Research Scholar,
Department of Computer Science,
Kirti M. Doongursee College (Autonomous), University of Mumbai, India

Abstract

The intersection of Ayurveda and artificial intelligence (AI) is gaining scholarly attention, particularly in Prakriti (body constitution) analysis. Ayurveda, an ancient medical system, classifies individuals into Vata, Pitta, and Kapha constitutions, influencing their health and disease susceptibility. While, traditional Prakriti assessments rely on qualitative observations, but AI-driven technologies offer opportunities to enhance diagnostic precision and standardization. This review synthesizes existing literature on Prakriti assessment methodologies and their integration with computational approaches. While previous studies have explored questionnaire-based assessments and limited biometric parameters, challenges remain in standardization, reproducibility, and empirical validation. The lack of large-scale datasets and AI models trained on Ayurvedic principles hinders alignment with contemporary biomedical frameworks. Additionally, few studies integrate physiological and machine learning-based approaches for a more comprehensive understanding of Prakriti. This paper identifies these research gaps and examines emerging AI methodologies, such as machine learning, neural networks, and predictive modeling, hold potential for advancing Prakriti analysis. This review also highlights ethical and methodological considerations, emphasizing the need for interdisciplinary collaboration and regulatory frameworks. AI-driven approaches can provide evidence-based validation of Ayurveda, enhancing its acceptance in modern healthcare. The findings underscore the need for a standardized, data-driven framework for

Vol. 7 & Issue 2 (April 2025)

Prakriti analysis, leveraging AI to bridge the gap between traditional knowledge and scientific rigor. This convergence not only enhances the credibility of Ayurveda but also paves the way for personalized, preventive, and precision medicine in global healthcare.

Keywords: Ayurveda, Prakriti, Artificial Intelligence (AI), Machine Learning, Personalized Medicine.

Introduction

Ayurveda, an ancient Indian system of medicine, has gained renewed interest in the realm of personalized healthcare due to its holistic approach and emphasis on individual constitution, known as Prakriti. Prakriti, which encompasses an individual's physical, mental, and emotional characteristics, plays a crucial role in understanding a person's health profile and susceptibility to diseases. Traditional Prakriti assessment methods, while valuable, have limitations in terms of standardization, objectivity, and scalability. These limitations have hindered the widespread integration of Ayurvedic principles into modern healthcare systems. (Patwardhan et al., 2005). However, the advent of artificial intelligence (AI) presents a promising opportunity to transform Ayurveda diagnostics by enhancing the accuracy, efficiency, and accessibility of Prakriti assessment. The potential of AI in this field extends to developing sophisticated algorithms that can analyze complex physiological and behavioral data, leading to more precise and personalized treatment recommendations (Rajkumar et al., 2023). Research in this area aims to bridge the gap between traditional Ayurvedic knowledge and modern technology, exploring how AI can be leveraged to create standardized, reliable, and easily deployable tools for Prakriti assessment (Singh et al., 2024). The scope of such research encompasses not only the development of AI-based diagnostic systems but also their validation against traditional methods and integration into contemporary healthcare practices.

Ayurveda, the ancient Indian system of medicine, emphasizes a personalized approach to health through the concept of **Prakriti**, which defines an individual's inherent constitution. Rooted in the balance of three **Doshas—Vata**, **Pitta**, and **Kapha—Prakriti influences physical traits**, **physiological functions**, and **psychological tendencies**. Vata, associated with air and space, governs movement and nervous system activities; Pitta, linked to fire and water, regulates digestion and metabolism; and Kapha, composed of earth and water, provides stability and immunity (Sharma & Chandola, 2017). Understanding an individual's Prakriti is crucial for preventive healthcare, disease management, and lifestyle planning. Traditionally, Prakriti assessment relies on **physical examination**, **pulse diagnosis (Nadi Pariksha)**, and **questionnaire-based analysis**, but these methods often involve subjectivity. With advancements in technology, particularly Artificial Intelligence (AI) and Machine Learning (ML), Prakriti classification can be standardized, improving accuracy and accessibility in Ayurvedic diagnostics (Joshi et al., 2024).

Vol. 7 & Issue 2 (April 2025)

Basics of Ayurveda and the Importance of Prakriti Analysis in Personalized Healthcare

Ayurveda, an ancient system of medicine that originated in India over 5,000 years ago, is one of the world's oldest holistic healing systems (Sharma & Dwivedi, 2020). The word "Ayurveda" comes from two Sanskrit words: 'Ayur' meaning life and 'Veda' meaning knowledge or science. Thus, Ayurveda translates to the "science of life." The core philosophy of Ayurveda revolves around the concept of maintaining harmony and balance within the body, mind, and spirit. It emphasizes the prevention of disease and the promotion of overall health by addressing the root causes of ailments rather than just treating the symptoms (Patwardhan et al., 2005). According to Ayurveda, health is achieved when the body, mind, and soul are in a state of balance with the environment (Tripathi et al., 2011).

Central to the Ayurvedic system is the concept of the *Doshas*, which are the energies believed to circulate in the body and govern its physical and mental processes. These Doshas—Vata, Pitta, and Kapha—are derived from the five elements (earth, water, fire, air, and ether) and govern various physiological and psychological functions. Vata, composed of air and ether, governs movement, communication, and the nervous system. Pitta, composed of fire and water, controls digestion, metabolism, and transformation. Kapha, made up of earth and water, governs structure, immunity, and lubrication. Each person is thought to have a unique combination of these Doshas, and the imbalance of any of them can lead to disease (Juyal et al., 2020).

A key component of Ayurvedic treatment is the analysis of an individual's *Prakriti*, or inherent constitution. Prakriti refers to the unique combination of the three Doshas that an individual is born with. It defines the person's physical, mental, and emotional characteristics and determines their susceptibility to certain imbalances and diseases. Prakriti analysis plays a crucial role in personalized healthcare, as it helps to understand the unique needs of each individual, guiding the development of tailored interventions to maintain or restore health.

Prakriti is determined at birth and remains relatively constant throughout life, although environmental factors, lifestyle choices, and diet can influence the balance of the Doshas. In Ayurveda, it is believed that understanding an individual's Prakriti helps in predicting their natural tendencies, strengths, and weaknesses, as well as their optimal lifestyle, diet, and exercise regimen. For instance, someone with a predominant Vata Dosha may be prone to dryness, anxiety, and digestive issues and might benefit from a warm, moist diet and calming practices. On the other hand, a person with a dominant Pitta Dosha, who is more prone to inflammation and irritability, may benefit from cooling foods and stress-reducing practices (Juyal et al., 2020).

The importance of Prakriti analysis in personalized healthcare lies in its ability to provide a comprehensive and individualized approach to treatment. By understanding the individual's constitution, Ayurvedic practitioners can offer precise recommendations for diet, herbal remedies, yoga, meditation, and lifestyle changes that are best suited to the person's unique needs. This personalized approach not only addresses the physical symptoms but also

Vol. 7 & Issue 2 (April 2025)

takes into account emotional, mental, and spiritual well-being, which is a hallmark of Ayurvedic medicine.

Prakriti analysis also serves as a preventive tool. By identifying a person's inherent imbalances early on, Ayurvedic practitioners can guide individuals on how to prevent the onset of diseases and maintain optimal health (Kshirsagar et al., 2021). For example, if a person's Prakriti analysis indicates an excess of Pitta, they may be advised to avoid spicy foods and intense physical exertion, as these can further aggravate the Pitta Dosha. Similarly, if an individual has a Kapha imbalance, they may be encouraged to engage in more physical activity and reduce heavy, oily foods in their diet.

Moreover, Prakriti analysis plays a vital role in managing chronic conditions. Many chronic health conditions arise when one or more Doshas are imbalanced for extended periods. Ayurvedic practitioners use Prakriti analysis to tailor treatments that address the root causes of these imbalances, rather than merely alleviating symptoms. This individualized approach not only improves the efficacy of treatment but also promotes long-term health and well-being by restoring balance at a deeper level.

Hence, Ayurveda offers a deeply personalized approach to healthcare, with the analysis of Prakriti being a cornerstone of this individualized care. By understanding a person's unique constitution, Ayurvedic practitioners can offer customized lifestyle, dietary, and therapeutic interventions that enhance both the prevention and treatment of diseases. This holistic approach, which incorporates physical, mental, and emotional dimensions, can lead to better health outcomes and a more balanced, fulfilling life. As interest in personalized medicine continues to grow globally, Ayurveda's emphasis on Prakriti analysis offers valuable insights into how personalized healthcare can be tailored to the unique needs of each individual (Tripathi et al., 2011).

Literature Review-

This research paper takes an exhaustive overview of books, journals and research papers /articles pertaining to above study. Ayurveda, an ancient Indian medical science, emphasizes the concept of *Prakriti*, which refers to an individual's unique constitution based on three fundamental bio-energies or *Doshas*: **Vata, Pitta, and Kapha** (Sharma & Dash, 2012). The classification of Prakriti is essential for personalized healthcare, as it influences an individual's physical, physiological, and psychological traits (Tiwari et al., 2017). Traditional methods of Prakriti analysis involve expert consultation through questionnaires and physical examinations (Patwardhan et al., 2005).

Despite its significance, conventional Prakriti assessment is often subjective and lacks standardization (Tripathi et al., 2019). This has led researchers to explore modern computational techniques, including Artificial Intelligence (AI), Machine Learning (ML), and Data Analytics, to enhance accuracy and objectivity (Joshi et al., 2021). AI has revolutionized various domains of healthcare, from diagnostics to personalized medicine (Topol, 2019). In the context of traditional medicine, AI-driven approaches have been applied to diagnose diseases, predict treatment outcomes, and enhance precision medicine (Hemanth et al., 2020. Several studies have attempted to integrate AI into Prakriti classification such as

Vol. 7 & Issue 2 (April 2025)

ML-Based Classification Models by Patwardhan et al. (2008) introduced statistical models for Prakriti prediction, laying the foundation for AI applications. More recent studies have explored ML algorithms like Decision Trees, Support Vvector Machines (SVM), and Neural Networks for automated classification (Jha et al., 2020).

While AI has the potential to enhance Ayurveda-based healthcare, challenges remain such as:

- **Data Standardization:** The lack of standardized Ayurvedic datasets hinders model training and accuracy (Mishra & Pandey, 2022).
- **Interpretability of AI Models:** AI-driven Prakriti analysis should be explainable and aligned with Ayurvedic principles (Shukla et al., 2021).
- Ethical and Privacy Concerns: Data privacy and security issues must be addressed to ensure ethical AI implementation in Ayurveda (Desai et al., 2023).

Role of AI in Healthcare:

Artificial Intelligence (AI) has emerged as a transformative force in healthcare, enabling precision medicine, automation of diagnostic processes, and predictive analytics (Topol, 2019). By leveraging vast amounts of medical data, AI facilitates faster and more accurate decision-making, reducing human errors and enhancing patient outcomes. One of the most significant AI applications in healthcare is Machine Learning (ML), which allows computers to learn from historical data and make informed predictions. ML algorithms are widely used in disease prediction, medical imaging analysis, and personalized treatment planning. In Ayurveda, ML can be utilized to standardize Prakriti analysis, ensuring objectivity and consistency in diagnosing an individual's physiological and psychological constitution.

Machine Learning (ML) in Healthcare

Machine Learning involves training models on vast datasets to identify patterns, correlations, and predictive insights. In healthcare, ML algorithms are used for:

- **Disease Prediction and Early Diagnosis**: Detecting diseases like diabetes, cancer, and cardiovascular conditions based on patient history and biomarkers.
- **Medical Imaging Analysis**: Enhancing the accuracy of X-rays, MRIs, and CT scans by detecting abnormalities with high precision.
- **Drug Discovery and Personalized Medicine**: Identifying the most effective drug combinations for patients based on genetic and clinical data.

In Ayurveda, ML can be applied to Prakriti assessment by analyzing patient data, historical health records, and expert consultations, improving the accuracy and reliability of traditional diagnostic methods (Joshi et al., 2022).

Machine Learning for Data-Driven Prakriti Classification

Machine Learning (ML) offers a **data-driven approach** to Prakriti classification by analyzing historical Ayurvedic assessments and predicting an individual's **Dosha composition** based on structured patient data. Traditional Prakriti analysis methods often involve subjectivity, but ML models enhance accuracy, consistency, and objectivity (Juyal et al., 2020). By training algorithms on **large datasets containing physical, physiological, and behavioral traits**, AI-driven systems can automate Prakriti classification, making it more accessible and scalable.

Vol. 7 & Issue 2 (April 2025)

Supervised Learning for Prakriti Prediction

Supervised learning, a widely used ML technique, relies on labeled datasets where individuals' Prakriti classifications (Vata, Pitta, or Kapha) serve as training examples (Kshirsagar et al., 2021). The algorithm learns patterns and correlations within the dataset and applies this knowledge to classify new individuals. Several ML models are particularly effective for **Prakriti prediction**:

- **Decision Trees**: These models create hierarchical structures where each node represents a decision based on physical or behavioral attributes (e.g., body type, skin texture, digestion patterns). The tree systematically classifies an individual's Dosha based on a set of learned rules (Joshi et al., 2022).
- Random Forests: By combining multiple decision trees, Random Forests improve classification accuracy and reduce the risk of overfitting. This ensemble method provides robust predictions for Prakriti assessment.
- **Support Vector Machines (SVMs)**: SVMs identify hyperplanes that best differentiate between Prakriti types based on input features. This technique is particularly useful when dealing with complex, multidimensional health datasets.
- Logistic Regression: A statistical model that predicts the probability of an individual belonging to a specific Dosha category based on numerical input variables (e.g., metabolism rate, energy levels, pulse readings) (Juyal et al., 2020).

Case Studies and Practical Implementations

The integration of Artificial Intelligence (AI) into Ayurveda has led to the development of **AI-based Prakriti assessment tools**, significantly enhancing the accuracy and efficiency of traditional diagnostic methods. Several studies and practical implementations have demonstrated how AI-driven systems can classify **Prakriti types (Vata, Pitta, Kapha)** using Machine Learning (ML) techniques, image processing, and sensor-based pulse analysis (Kshirsagar et al., 2021).

Existing AI Models for Ayurveda

AI-powered Ayurveda tools leverage machine learning models, questionnaire-based assessments, and biometric data analysis to predict an individual's Prakriti. Some notable implementations include:

- Ayurvedic Diagnostic Systems: AI models trained on large datasets of Prakriti classifications use decision trees and random forests to predict Dosha dominance.
- **Nadi Pariksha Devices**: Sensor-based AI models analyze pulse variations, mimicking expert practitioners' assessments with higher precision (Joshi et al., 2022).
- **Ayurveda Health Apps**: Mobile applications incorporate AI-driven questionnaires to provide personalized dietary, lifestyle, and wellness recommendations based on Prakriti classification.

These models significantly reduce subjectivity and increase the reliability of Ayurvedic diagnosis.

Vol. 7 & Issue 2 (April 2025)

Experimental Setup for AI-Based Prakriti Analysis

A well-structured **AI-based Prakriti assessment system** follows a rigorous experimental methodology, consisting of three key phases:

- 1. **Data Collection**: Large-scale data is gathered from Ayurvedic practitioners, existing patient records, and digital health platforms. Inputs include **physical traits, metabolic indicators, and behavioral attributes**.
- 2. Feature Extraction: Relevant features such as body type, skin texture, pulse patterns, and digestion efficiency are identified and quantified for ML training. Advanced imaging techniques and biometric sensors are used to enhance precision (Joshi et al., 2022).
- 3. AI Model Selection: Supervised learning algorithms like Decision Trees, Support Vector Machines (SVMs), and Random Forests are employed for Prakriti classification. Hyper parameter tuning ensures optimal model performance.
- 4. Validation and Accuracy Measurement: Models are evaluated using cross-validation techniques, confusion matrices, and accuracy scores. Performance is compared against expert Ayurvedic practitioners' diagnoses to assess reliability (Juyal et al., 2020).

Challenges and Future Directions in Integrating Ayurveda with Modern Healthcare Systems

As Ayurveda continues to gain global recognition as a holistic approach to healthcare, its integration into modern medical practices presents both significant opportunities and challenges. Despite the growing interest in personalized medicine, there are several technical, ethical, and logistical hurdles that need to be overcome for Ayurveda to be effectively integrated with contemporary healthcare systems. This section outlines some of the key challenges, potential innovations, and future research directions in this area.

Technical Challenges

One of the most significant technical challenges in integrating Ayurveda with modern healthcare systems is data standardization and interoperability. Ayurvedic practices, such as Prakriti analysis, require the collection of highly personalized data that encompasses not only physical and mental health but also lifestyle and environmental factors. However, much of the existing healthcare data is structured around the biomedical model, with limited ability to accommodate the holistic and multidimensional data required by Ayurveda (Kshirsagar et al., 2021). Data standardization, which ensures that information can be universally understood and integrated, remains a major hurdle. Additionally, there is a need for better integration between Ayurvedic health information and electronic health record (EHR) systems used by modern medical practitioners. Achieving seamless integration between these different systems will require the development of sophisticated interfaces and standardized protocols that can bridge the gap between traditional and modern healthcare approaches (Joshi et al., 2022).

Vol. 7 & Issue 2 (April 2025)

Ethical and Privacy Concerns

The increasing use of digital tools, such as mobile applications and wearable devices, for personalized healthcare introduces significant ethical and privacy concerns. When integrating Ayurvedic diagnostics and treatments into digital platforms, it is crucial to ensure that patient data is adequately protected. Informed consent processes must be robust, ensuring that individuals understand how their data will be collected, stored, and used. Transparency in data management practices, especially when dealing with sensitive health information, is vital to maintaining patient trust. Furthermore, there is a risk of misuse of personal data by unauthorized third parties, highlighting the need for stringent cybersecurity measures (Joshi et al., 2022). Data anonymization techniques and adherence to local data protection laws (such as GDPR in Europe or HIPAA in the U.S.) will be crucial in mitigating these risks (Juyal et al., 2020).

Potential Innovations

The potential for innovation in personalized Ayurvedic healthcare is immense, particularly through the use of artificial intelligence (AI) and wearable technologies. AI-driven mobile applications could revolutionize Prakriti analysis by enabling individuals to conduct self-assessments through detailed questionnaires, lifestyle tracking, and symptom monitoring. These apps could offer real-time insights into the balance of an individual's Doshas and provide personalized recommendations for diet, exercise, and lifestyle. Furthermore, wearable devices that monitor vital signs and biometric data could be integrated with Ayurvedic practices to track real-time fluctuations in Dosha imbalances. For example, a wearable device could measure body temperature, heart rate, and other physiological indicators to provide continuous feedback on the individual's health status, facilitating dynamic adjustments to their Ayurvedic treatments.

Future Research Directions

The future of Ayurveda in the context of personalized healthcare is closely tied to the advancement of technology and research. Multimodal AI models combining text, image, and biometric analysis hold great promise for improving Ayurvedic diagnostics. For instance, AI could analyze not just textual health data but also images (such as photographs of the tongue or face, which are often used in Ayurvedic diagnosis) and biometric data (such as heart rate variability or skin conductance). This would allow for a more comprehensive, data-driven approach to Prakriti analysis, increasing the accuracy and efficiency of diagnosis and treatment recommendations.

Collaboration between Ayurvedic scholars and AI experts is another promising avenue for future research. Ayurvedic practitioners have long developed intricate systems for understanding the human body, mind, and spirit. By combining their traditional knowledge with cutting-edge AI technology, there is the potential to create powerful tools that can revolutionize personalized healthcare. Collaborative efforts can also focus on creating large, high-quality datasets that reflect the diverse Prakriti types and their associated health outcomes, improving the understanding of Ayurvedic concepts through empirical evidence.

Vol. 7 & Issue 2 (April 2025)

While the integration of Ayurveda into modern healthcare systems presents significant challenges, the potential for innovation is immense. Overcoming technical hurdles such as data standardization and ensuring the protection of patient privacy are critical for the future of Ayurvedic practices in personalized healthcare. By leveraging technologies like AI and wearables, and fostering interdisciplinary collaboration, the future of Ayurveda in healthcare looks promising. With continued research and technological advancements, personalized Ayurvedic care could offer a truly holistic and individualized approach to health and wellbeing.

Conclusion

In conclusion, the integration of Ayurveda with modern healthcare systems, particularly through the use of artificial intelligence (AI), holds transformative potential for personalized healthcare. Key findings from the research highlight AI's ability to enhance Prakriti analysis, a cornerstone of Ayurvedic practice, by providing more accurate, data-driven insights into an individual's unique constitution. By leveraging AI, Ayurvedic diagnostics can be more precise, enabling personalized treatments tailored to the specific needs of each individual. This fusion of traditional wisdom and modern technology has the capacity to revolutionize not only treatment plans but also the practice of preventive medicine, enabling early detection of imbalances and helping individuals maintain optimal health.

The incorporation of AI into Ayurvedic practices brings several benefits to personalized healthcare. With the support of AI-driven applications and wearable devices, individuals can receive real-time assessments of their Dosha imbalances, allowing for more proactive and informed health management. Furthermore, by using AI to process large datasets, healthcare providers can gain a deeper understanding of the complex relationships between Prakriti, lifestyle, and health outcomes, enhancing the ability to offer holistic treatments that address both physical and mental health. This personalized approach, grounded in both ancient knowledge and modern technology, offers a more comprehensive and individualized path to well-being. However, successful integration and expansion of Ayurvedic practices in the healthcare system require interdisciplinary collaboration between Ayurvedic scholars, healthcare professionals, and AI experts. Such partnerships can foster innovation and ensure that both traditional knowledge and technological advancements are aligned to offer the best possible care. Ethical considerations surrounding patient data privacy, informed consent, and transparency must also be at the forefront of these efforts. Policy recommendations should focus on establishing clear frameworks for data protection, fostering public trust, and ensuring accessibility to these innovative solutions.

Ultimately, the future of personalized healthcare, when enriched by Ayurveda and AI, offers an exciting opportunity to create a more balanced and individualized approach to health. With careful attention to ethical concerns and a collaborative spirit, Ayurveda's timeless wisdom can harmoniously coexist with modern technological advancements, leading to a healthier and more holistic future for all.

Vol. 7 & Issue 2 (April 2025)

References

- 1. Joshi, K., Shukla, V., & Ghodke, Y. (2024). Artificial Intelligence in Ayurveda: A Future Perspective. International Journal of Ayurvedic Research, 4(2), 45-57.
- 2. Desai, R., Sharma, A., & Verma, K. (2023). Ethical and privacy concerns in Aldriven Ayurveda applications. *Journal of Health Informatics*, 12(3), 45-59.
- 3. Joshi, R. R., Patwardhan, B., & Chopra, A. (2022). Exploring Prakriti-based medicine: A machine learning perspective on Ayurveda. Molecular and Cellular Biochemistry, 476(2), 223-231.
- 4. Hemanth, D. J., Kumar, V., & Garcia, C. (2020). Role of artificial intelligence in healthcare: A review. *Journal of Medical Systems*, 44(5), 1-15.
- 5. Sharma, H., & Dwivedi, S. (2020). Ayurveda: A personalized approach to health and disease management. Journal of Traditional and Complementary Medicine, 10(4), 355-362.
- 6. Jha, P., Sharma, S., & Tiwari, R. (2020). Machine learning models for automated Prakriti classification. *International Journal of Ayurvedic Research*, 8(2), 112-124.
- 7. Joshi, N., Singh, P., & Dubey, M. (2021). Artificial intelligence and Ayurveda: Opportunities and challenges. *Indian Journal of Integrative Medicine*, 9(4), 210-225.
- 8. Mishra, R., & Pandey, N. (2022). The challenge of data standardization in AI-based Ayurveda applications. *Journal of Data Science and Healthcare*, 15(2), 33-47.
- 9. Kshirsagar, S., Shukla, A., & Joshi, A. (2021). Artificial intelligence in Ayurveda: Potential applications and research directions. Ayurveda Research Journal, 10(2), 112-125.
- 10. Juyal, D., Sharma, N., & Kumar, S. (2020). Understanding the role of Prakriti in health and disease through Ayurveda and modern science. International Journal of Ayurveda Research, 11(4), 253-260.
- 11. Patwardhan, B., Joshi, K., & Chopra, A. (2005). Classification of human population based on Prakriti an Ayurvedic approach. *Journal of Alternative and Complementary Medicine*, 11(5), 709-718.
- 12. Patwardhan, B., Warude, D., Pushpangadan, P., & Bhatt, N. (2008). Ayurveda and traditional medicine: A reappraisal. *Journal of Ethnopharmacology*, 114(2), 120-135.
- 13. Sharma, H., & Dash, B. (2012). *Principles of Ayurveda and Prakriti analysis*. New Delhi: Chaukhamba Sanskrit Pratishthan.
- 14. Shukla, A., Mehta, R., & Kapoor, V. (2021). Explainable AI in Prakriti classification: Bridging Ayurveda and modern science. *Computational Health Informatics Journal*, 7(3), 98-110.
- 15. Kshirsagar, A. R., Singh, N., & Gupta, S. (2021). Ayurvedic Dosha assessment and its correlation with metabolic disorders. Indian Journal of Traditional Knowledge, 20(1), 45-52.
- 16. Sharma, R., & Chandola, H. (2017). Understanding Prakriti-based Ayurvedic diagnostics: A modern perspective. Journal of Ayurveda and Integrative Medicine, 8(3), 135-142.

Vol. 7 & Issue 2 (April 2025)

- 17. Tiwari, R., Sharma, S., & Agrawal, P. (2017). Personalized medicine in Ayurveda: The role of Prakriti in disease susceptibility. *Journal of Ayurveda and Integrative Medicine*, 8(1), 23-31.
- 18. Topol, E. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
- 19. Tripathi, M., Yadav, S., & Verma, R. (2019). Standardization of Ayurvedic Prakriti analysis through AI. *International Journal of Alternative Medicine*, 6(4), 134-147.
- 20. Rajkumar, R., Mishra, S., & Sharma, P. (2023). AI-driven Prakriti analysis: Integrating Ayurvedic wisdom with modern computational tools. Journal of Integrative Medicine Science, 12(1), 101-112.
- 21. Singh, A., Verma, S., & Mehta, P. (2024). Bridging Ayurveda and AI: Standardization of Prakriti assessment. Journal of Advanced Ayurvedic Sciences, 9(2), 67-79.
- 22. Tripathi, R., Sharma, S., & Mishra, B. (2011). Fundamentals of Ayurveda and its role in contemporary medicine. Ancient Science of Life, 31(1), 25-34.